RULES AND REGULATIONS
FOR
ELECTRIC SERVICE

PUBLISHED 1993
TABLE OF CONTENTS

SECTION I – INTRODUCTION..5
 1. PURPOSE..5
 2. SCOPE...5
 3. COOPERATION...5
 4. CODES...5
 5. RESPONSIBILITY...5
 6. INSPECTION...5
 7. APPROVALS...6
 8. SERVICE AREA ADDRESSES..6

SECTION II – DEFINITIONS...7

SECTION III – GENERAL INFORMATION AND REQUIREMENTS..8
 1. APPLICATION FOR SERVICE...8
 2. LOAD CALCULATION..8
 3. TEMPORARY SERVICE..8
 4. PERMANENT SERVICE..8
 5. LIMITATIONS ON THREE PHASE SERVICE...9
 6. RIGHT-OF-WAY AND ACCESS..9
 7. LIMITS OF LIABILITY...9

SECTION IV – SERVICE CONNECTIONS...11
 1. GENERAL...11
 2. OVERHEAD SERVICE CONNECTIONS (0-600V)..11
 3. UNDERGROUND SERVICE CONNECTIONS (0-600V)..16
 3.2. Conduits – Types...16
 3.3. Conduits – Installation...16
 4. UNDERGROUND SERVICE CONNECTION FROM OVERHEAD DISTRIBUTION LINE (0-600V).....16
 5. UNDERGROUND SERVICE CONNECTION FROM UNDERGROUND DISTRIBUTION LINE (0-600V).....17
 6. SERVICE FROM SMALL SINGLE PHASE PAD-MOUNTED TRANSFORMERS FED FROM OVERHEAD SOURCE..17
 7. LARGE THREE PHASE PAD-MOUNTED TRANSFORMER SERVICES FROM OVERHEAD SOURCE........17
 8. NEW RESIDENTIAL, APARTMENT/CONDOMINIUM, MOBILE HOME AND PUD DEVELOPMENT........18
SECTION I – INTRODUCTION

1. PURPOSE

1.1. In this booklet the Company presents information and general specifications relative to the introduction and use of electricity supplied from its lines. The booklet is intended as a guide in making electrical installations to protect the interests of the customers and to comply with regulations which experience has shown to be necessary for safe, adequate, and satisfactory services.

2. SCOPE

2.1. The information and specifications included in this booklet cover conductors and equipment connecting the Company’s electricity supply system to the premises, and some other subjects associated with the supply of electricity that are of mutual interest to the Company, customer, architect, engineer and electrical contractor. It is not a complete set of rules governing the installation of electrical wiring and equipment.

3. COOPERATION

3.1. It is the desire of the Company to provide and maintain dependable, safe, and satisfactory electric service in a courteous and efficient manner. Cooperation of customers and their agents is appreciated. Preliminary information to the Company early in the development of plans leading to new increased electric service will aid in proper scheduling of the service work. Cooperation of all interested parties and strict adherence to the specifications in the booklet will expedite satisfactory electric service.

4. CODES

4.1. These specifications are a supplement to the NATIONAL ELECTRICAL CODE (NEC) but they are not a substitute for that code nor for municipal codes. The Company requires that the customers’ wiring installations be made in accordance with applicable codes.

5. RESPONSIBILITY

5.1. The customer has the responsibility to maintain his wiring and equipment in a safe operating condition. The Company cannot accept any responsibility for the customers’ wiring and equipment.

6. INSPECTION

6.1. The Company checks only the wiring and equipment from the service drop or lateral to, and including, the service equipment and meter location for general compliance with these specifications.
7. APPROVALS

7.1. To protect the customers’ interest, as well as its own, the Company requires the customer to furnish appropriate evidence of the safe condition of his wiring before energizing the service to a new installation. This will be in the form of a written approval from the applicable City or County Building Inspector.

8. SERVICE AREA ADDRESSES

8.1. FERNANDINA BEACH DIVISION

Florida Public Utilities Company
780 Amelia Island Parkway
Fernandina Beach, FL 32034
(904) 261-3663

8.2. MARIANNA DIVISION

Florida Public Utilities Company
2825 Penn Ave
Marianna FL 32448
(850) 526-6800
SECTION II – DEFINITIONS

1. **Building** – A structure which stands alone or which is cut off from adjoining structures by protruding masonry fire walls with all openings therein protected by approved fire doors.

2. **CIAC** – Contribution In Aid of Construction, a charge for electric service.

3. **Company** – The **FLORIDA PUBLIC UTILITIES COMPANY** (FPU) or an employee qualified to represent it.

4. **Customer** – A present or prospective user of the Company’s electric service, or the architect, engineer, electrical contractor, land developer, builder, or other person representing him.

5. **Ground** – A conducting connection between an electrical circuit or equipment and earth, or some conducting body which serves in place of the earth.

6. **Line** – A system of poles, wires, and fixtures, or the equivalent ducts, conduits, cables, etc. (when placed underground) used for general distribution of electricity.

7. **Service Connection** – A service connection is one service lateral and its associated service entrance.

8. **Service Drop** – The overhead service conductors between the last pole or other aerial support and the first point of attachment to the building.

9. **Service Lateral** – A system of conductors and equipment for delivering electricity or termination of the service lateral to and including the service equipment on the customer’s premises.

10. **Service Entrance** – That part of the installation from the point of attachment or termination of the service lateral to and including the service equipment on the customer’s premises.

11. **Service Entrance Conductors** – The service conductors or cable which extend from the point of attachment to termination of the service lateral to the terminals of the service equipment.

12. **Service Equipment** – The necessary equipment, usually consisting of circuit breaker or switch and fuses and their accessories, located near point of entrance of supply conductors to a building and intended to constitute the main control and means of cutoff for the supply to the premises.

13. **Wire Size** – Where stated, the size is in terms of American Wire Gauge (AWG) and applied to copper conductors. Where the Company will accept the use of aluminum conductors, a size shall be selected having equivalent Ampacity to the stated copper conductor.
SECTION III – GENERAL INFORMATION AND REQUIREMENTS

1. APPLICATION FOR SERVICE

1.1. Application for service shall be made in writing on the Company’s form. This form may be obtained by telephone, mail or at the Company’s office. Application for service should be made as far as possible in advance of the date electricity is required.

1.2. The customer or its contractor should consult the Company regarding the character of service available before plans are completed, equipment purchased, or construction commenced on facilities to be connected to the Company’s distribution system. Information the Customer or its contractor furnishes the Company in regard to the Customer’s proposed electrical installation should be in writing. The Company will not be responsible for errors resulting from the transmission of information verbally or by telephone.

2. LOAD CALCULATION

2.1. An NEC load calculation and panel schedule must be furnished to the Company with each application for all service requests exceeding 200 amps. FPU will size Company equipment to serve the needs of each installation.

3. TEMPORARY SERVICE

3.1. Examples of temporary services are those supplied to structures other than permanent or substantial buildings. This service is usually of short duration, or during the construction of permanent buildings. At the time the customer applies for temporary service. Temporary services will require a nonrefundable temporary facilities charge.

4. PERMANENT SERVICE

4.1. Since all voltage characteristics are not available at all locations, the customer shall consult the Company, before proceeding with installation of wiring or ordering of electrical equipment, to determine the type of service to be supplied.

4.2. The service voltage, number of phases and wires will depend upon available lines, the customer location and the size and nature of the proposed service.

4.3. The Company will designate the character of service and location of the service entrance.

4.4. In a duplex, multi-family residence, or condominium, a meter is required for each living quarters.
4.5. The follow table will be used as a guide in determining the type of service for which the customer may qualify, any exceptions thereto may require a CIAC by the customer.

<table>
<thead>
<tr>
<th>Secondary Voltage</th>
<th>Number of Wires</th>
<th>Number of Phases</th>
<th>Combined 3 Phase Equipment Demand Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/240V 3 Wire</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>* 120/240V 4 Wire Delta</td>
<td>3</td>
<td>5 HP Minimum (Must be contained in one device)</td>
<td></td>
</tr>
<tr>
<td>* 120/208V 4 Wire Wye</td>
<td>3</td>
<td>75 KVA Minimum</td>
<td></td>
</tr>
<tr>
<td>** 277/480V 4 Wire Wye</td>
<td>3</td>
<td>150 KVA Minimum</td>
<td></td>
</tr>
</tbody>
</table>

* May not be available in residential areas.
** Usually placed upon the customer’s property.

4.6. The Company shall make free extension or alterations in its facilities to provide service to an applicant within the company’s service area in accordance with rules and regulations on file with the Florida Public Service Commission; provided, however, that the patronage and demand will be of such permanency as to warrant the expenditure involved.

5. LIMITATIONS ON THREE PHASE SERVICE

5.1. In general, the Company will furnish single phase service for any residential or commercial loads involving no single motor larger than five horsepower. It has never contemplated supplying service to any motor rated at five horsepower or smaller at three phase anywhere. Therefore, unless already available, three phase service will not be furnished for residential loads or for commercial loads where no commercial motor exceeds five horsepower until the Customer makes a contribution to the Company equal to the excess of the cost of providing three phase service over the cost of furnishing service to such load at single phase.

6. RIGHT-OF-WAY AND ACCESS

6.1. Duly authorized agents of FPU shall at all times have access to FPU facilities on the customer’s premises for the purpose of installing, maintaining, inspecting, and removing FPU property, and shall have access to the premises during normal working hours for the purpose of meter reading. The Customer shall grant or cause to be granted to FPU without cost to FPU, all rights, easements, and permits and privileges, which in the opinion of FPU are necessary for the rendering of service to the customer.

7. LIMITS OF LIABILITY

7.1. The Company will use reasonable diligence at all times to provide dependable service at the nominal voltage, but does not guarantee, nor will it be liable to the customer, for complete or partial failure or interruption of service, for fluctuations in voltage, or for phase failure or reversal.
7.2. FPU shall not be liable for any occurrence, act or omission caused directly or indirectly by mechanical failure of equipment and/or facilities, by repairs or adjustments to its system, or for want of supply, or by riots, strikes, civil unrest, insurrections, accident, litigation, interference by Federal, State or Municipal Governments, acts of God, acts of the public enemy, or any cause beyond FPU control.

7.3. After the electric energy passes the point of service, it becomes the property of the customer and FPU shall not be liable for loss or damage to any person or property whatsoever resulting directly or indirectly from the use or misuse or presence of said electric energy on the customer’s premises.
SECTION IV – SERVICE CONNECTIONS

1. GENERAL

1.1. This section applies to each new service installation and to existing installations when changes and/or rearrangements are made. Each case shall be referred to the Company before electrical work has begun.

1.2. Only one service lateral will be made available to a customer’s premises, not divided by protruding masonry fire wall construction. Exceptions may be made where a customer requires services of different voltage characteristics which are allowed by NEC and local codes. Such exceptions will require written approval from the inspecting authority.

1.3. The type of construction, route of the service connection and meter location will be determined by FPU.

1.4. In cases where the customer desires a service location other than the one designated by FPU, the desired alternate location will be honored if the customer pays for any additional expenses required for the service connections to the alternate location and provided the alternate location meets all codes and FPU requirements.

1.5. Services will not be run from building to building.

1.6. Heights of meters will generally be 5'-0" from finished grade to the center of meter trim. Exceptions to this rule must be cleared with FPU engineering.

2. OVERHEAD SERVICE CONNECTIONS (0-600V)

2.1. It is the customer’s responsibility to provide a suitable support for the attachment of the service drop. The point of attachment must be located such that the lowest point of sag on a new or replacement drop be in accordance with the clearances indicated on Fig. 2, Page 14.

2.2. Service drop conductors shall not be readily accessible and shall have a clearance of not less than 8’ from the highest point of roofs over which they pass with the following exceptions.

2.2.1. Where the voltage between conductors does not exceed 300 and the roof has a slope of not less than 4” in 12” the clearance may be not less than 3’.

2.2.2. Service drop conductors of 300 volts or less which do not pass over more than a maximum of 4’ of the overhang portion of the roof for the purpose of terminating at a (through-the-roof) service raceway or approved support may be maintained at a minimum of 18” from any portion of the roof over which they pass. Conductors shall have a clearance of not less than 36” from windows, doors, porches, fire escapes, or similar locations.
2.3. It will be necessary for the customer to guy the service riser if the point of attachment exceeds 36” above the penetration of the roof.

2.4. Service entrance conductors shall be without splice from the point of attachment of the service to the meter trim.

2.5. No other cables or wires may be installed in the service conduit.

2.6. The Customer shall furnish, install, own and maintain all service entrance conductors and service equipment.

2.7. The Company will furnish, install, own and maintain adequate metering facilities to measure the energy and demand used in accordance with its contracts.

2.8. The point of service attachment must be directly accessible from the ground by ladder.

2.9. Where buildings are constructed of brick, stone, asbestos shingles, aluminum siding, or other similar materials, the customer must at his own expense, furnish and install a ½” galvanized eye bolt with a 1” minimum diameter eye securely bolted to a stud or plate at the point designated by the Company for the service cable attachment.

2.10. Any service exceeding 800 amperes shall be run underground to FPU’s point of service.

2.11. Under no circumstances will SEU type cable be allowed for riser conductors.

2.12. All conduit that will be used for the support of the service attachment must be rigid galvanized.

2.13. All conduit, other than that covered in B-18, can be PVC Sch 80.
NOTES:
1. A detailed drawing sheet for a temporary power service pole can be obtained from the office of Florida Public Utilities Company.
2. Guy and anchor to be install by the customer if required by Florida Public Utilities Company.
3. All clearances must meet those shown on Figure 1. Page 8.
4. Diameter at the top of the pole must be at least 6".
SERVICE NOTES:
WEATHER HEADS INSTALLED THROUGH ROOFS SHALL HAVE A MIN 3' CLEARANCE BETWEEN THE LOWEST POINT OF FPUC SERVICE AND THE ROOF.
1. CUSTOMER SHALL PROVIDE A SUITABLE ATTACHMENT POINT FOR FPUC CONDUCTOR IN THE FORM OF A:
 1.1. EYE BOLT FOR WEATHER HEADS BELOW THE ROOF LINE
 1.2. MAST CLAMP/STRAP FOR WEATHER HEADS ABOVE THE ROOF LINE
2. CUSTOMER MUST PROVIDE ADEQUATE GROUNDING OF FACILITIES IN COMPLIANCE WITH NEC AND LOCAL CODES.
3. DRIP LOOP CLEARANCE SHALL BE 18' FROM ROOF.

EYE BOLT BY CUSTOMER
WEATHER HEAD BY CUSTOMER

SERVICE DROPP BY FPUC
WEATHER HEAD BY CUSTOMER

SERVICE MAST W/ GALVANIZED STRAPS BY CUSTOMER

23' MAX
14' MIN
SEE TABLE BELOW

3' MIN CLEARANCE TO BUILDING OPENINGS

METER BASE BY CUSTOMER

MOUNT METER SOCKET SECURELY, AND LEVEL IN HORIZONTAL AND VERTICAL PLANES
LINE HOT LEGS CONNECTION BY CUSTOMER

LOAD HOT LEGS CONNECTION BY CUSTOMER

SERVICE MOUNTING GUIDE
NESC CLEARANCES AREA FROM THE CUSTOMER'S HOME MINIMUM ATTACHMENT HEIGHT TO THE NEAREST FPUC FACILITIES FROM GROUND TO FPUC SERVICE WIRE

12'	SPACE OR WAYS SUBJECT TO PEDESTRIAN TRAFFIC ONLY	14'
12'	DRIVeways, PARKING LOTS AND ALLEYS *NOT SUBJECT TO TRUCK TRAFFIC*	16'
18'	ROADS, STREETS AND OTHER AREAS SUBJECT TO TRUCK TRAFFIC	23'

BEFORE EXCAVATION CALL TOLL FREE 811
SUNSHINE STATE ONE CALL OF FLORIDA
NOTES:
1. A DETAILED DRAWING SHEET FOR A TEMPORARY POWER SERVICE POLE CAN BE OBTAINED FROM THE OFFICE OF FLORIDA PUBLIC UTILITIES COMPANY.

2. GUY AND ANCHOR TO BE INSTALLED IF REQUIRED BY FLORIDA PUBLIC UTILITIES COMPANY.
3. UNDERGROUND SERVICE CONNECTIONS (0-600V)

3.1. The underground installation by the Customer, from their service equipment to FPU facilities, must meet minimum requirements of the NATIONAL ELECTRIC SAFETY CODE, NATIONAL ELECTRIC CODE and local codes whichever is more stringent. The rules as listed herein are based on experienced customer needs and conditions.

3.2. Conduits – Types

3.2.1. Rigid galvanized iron or steel, fiber, concrete, heavy wall transite or UL approved plastic conduits will be approved. The conduit shall be sized in accordance with the current edition of the NATIONAL ELECTRIC CODE, but in no case shall be less than 2 inches in diameter for permanent services.

3.2.2. All exposed underground riser conduits must be rigid galv. Or Sch. 80 PVC on the line side of the meter trim. Sch. 40 PVC may be used on the load side of the meter trim.

3.3. Conduits – Installation

3.3.1. Service conduits on customer’s property shall be buried with a minimum cover of 24 inches below final grade. Service conduits buried beyond the Customer’s property line shall be buried with a minimum cover of 30 inches below final grade.

3.3.2. The minimum radii of ells shall be 18 inches.

3.3.3. No more than the equivalent of two 90° ells shall be allowed in a conduit run unless specific radius requirements are met and approved by the Company to reduce stress on the cable and the conduit system.

3.3.4. For all conduit runs of over 100 feet, the minimum size of conduit shall be 3”.

3.3.5. Customer shall provide an acceptable pull wire in all conduits.

3.3.6. Electric conduits shall be gray in color.

3.4. For existing underground service lateral where the Customer requires a change in service characteristics and/or service capacity, it is the Customer’s responsibility to install these facilities under the same requirements as new service.

4. UNDERGROUND SERVICE CONNECTION FROM OVERHEAD DISTRIBUTION LINE (0-600V)

4.1. The Customer will furnish and install the necessary conduit system between the meter location including a galvanized ell or sweep and a section of galvanized conduit to a point 10 feet above final grade on the pole. The Company will provide and install the conductors from the pole to the Customer’s service entrance. Exceptions to this policy must be approved by the Company.
5. UNDERGROUND SERVICE CONNECTION FROM UNDERGROUND DISTRIBUTION LINE (0-600V)

5.1. Where the Company’s distribution facilities are underground it will be the Customer’s responsibility to install the conduit from the service entrance location to the Company owned manhole, or transformer on the public right-of-way. The Company will provide and install the conductors from the Company-owned manhole or transformer to the Customer’s service entrance.

6. SERVICE FROM SMALL SINGLE PHASE PAD-MOUNTED TRANSFORMERS FED FROM OVERHEAD SOURCE

6.1. Upon request, electric service may be supplied by pad-mounted transformers located on private property near the load and fed by underground cable from nearby FPU overhead lines. Such installations will be reviewed on an individual basis by FPU and may require the Customer to prepay for the estimated cost differential between the requested underground system and an equivalent overhead system.

7. LARGE THREE PHASE PAD-MOUNTED TRANSFORMER SERVICES FROM OVERHEAD SOURCE

7.1. Large services having a minimum load requirement of 75KVA may be served by pad mount transformers. Such installation will be subject to the following requirements.

7.1.1. The Customer shall submit two copies of the site plan to FPU with the desired transformer pad or vault location indicated thereon. The location must be accessible by heavy equipment and shall be clear of overhead obstructions. Complete electrical load data must accompany the plans. FPU will return one copy of the site plan showing the approved locations for the transformer, conduit and FPU pole.

7.1.2. The Customer shall furnish and install the transformer pad per FPU Specifications.

7.1.3. Primary conduit (minimum 3-2”) and secondary conduit shall be furnished and installed by Customer. All ells in the primary conduit shall be long sweep. The Customer may also be required to install pull boxes.

7.1.4. The Customer shall supply, install, and maintain the service conductors from the transformer to his load center and leave eight (8) feet excess cable above the pad surface for FPU to make connections to the transformers.

7.1.5. FPU will supply and install the transformer on the Customer’s pad. FPU will also furnish and install primary cable from the pole to the Customer’s transformer pad.

7.1.6. FPU will make all primary and secondary connections within the transformer.

7.1.7. FPU will provide and install secondary compression lugs for specific conductor sized to be installed in three phase pad-mounted transformers. Sizes furnished by FPU will be limited to the following: 2, 1/0, 2/0, 4/0, 350MCM, 500MCM and 750MCM. The Customer will provide and FPU will install lugs for conductors not included in this list. The maximum number of conductors per phase will be limited to six (6). The maximum size conductor will be limited to 750MCM.

7.1.8. There shall be a minimum of 12 feet of unobstructed operating area on the front side of the pad-mounted transformer and 2 feet of unobstructed area measured from the edge of the transformer on all other sides.
7.1.9. Conduits shall be buried with a minimum cover of 36 inches for all voltages 600 and above.

8. NEW RESIDENTIAL, APARTMENT/CONDOMINIUM, MOBILE HOME AND PUD DEVELOPMENT

8.1. When a developer desires or is required to utilize an underground distribution system within all or part of his development, he must contact FPU for details of our Underground Distribution Procedure.
NOTES:

THE CUSTOMER INSTALLED CONDUIT SYSTEM IS OWNED AND MAINTAINED BY FPU AFTER CABLE IS INSTALLED

SERVICE CONDUIT TO BE FURNISHED AND INSTALLED BY CUSTOMER FROM METER BASE TO POWER POLE. SERVICE CABLE TO BE FURNISHED AND INSTALLED BY F.P.U. FROM METER BASE TO POLE.

GROUNDING SHALL BE IN ACCORDANCE WITH THE N.E.C. AND APPLICABLE ELECTRICAL INSPECTION DEPARTMENT CODE AND SHALL BE SUPPLIED, INSTALLED AND MAINTAINED BY CUSTOMER 25 OHMS OR LESS.

ELECTRICAL WARNING TAPE WILL BE INSTALLED OVER COMPLETE RUN OF SERVICE CONDUIT

WHERE SERVICE EXCEEDS 200 AMPERES, CONDUIT SHALL BE SIZED TO ACCOMMODATE CONDUCTORS USED.

SERVICE RUNS WILL BE 3" CONDUITS.

INSTALL PULL STRING IN CONDUIT SYSTEM.
SECTION V – SERVICE EQUIPMENT

1. SERVICE EQUIPMENT – GENERAL

1.1. Each service entrance shall be provided with disconnecting means and overcurrent protection. This service equipment may be one or not more than six fused switches or circuit breakers grouped at a readily accessible point near the entrance of the service conductors. When more than six subdivisions of the service are desired, one or more, but not over six, main service disconnects may be required. Switches must be grouped at one location and identified.

1.2. The location of the service equipment and the general electrical arrangement will be agreed upon after mutual consideration of all factors by the Customer and the Company.

1.3. Service equipment shall conform to the NATIONAL ELECTRICAL CODE and all local authorities having jurisdiction.

2. BUSINESS ESTABLISHMENTS

2.1. Because Business establishments, whether Commercial or Industrial, will each have their own particular electrical needs, varying greatly in their size and characteristics, it is essential that details of each installation be discussed at an early date with the Company. Based upon this information, the Company will specify the service voltage and arrangement and assist the Customer in selection of proper service equipment.

3. SERVICE RATED 400 AMPERES AND ABOVE, BELOW 600 VOLTS

3.1. It is suggested than an early meeting be arranged by the Customer with the Company to discuss the service equipment and its arrangement.

3.2. For each service 400 amperes and above, it is important that the Customer provide the Company with detailed plans, specifications and load calculations prior to the purchase of service equipment and to proceeding with the installation.

3.3. Any tap made ahead of the main service equipment, for fire pumps, exit lights, control power for circuit breaker, etc., shall be provided with disconnecting means and overcurrent protectors adequate for the duty. Such connections shall be made only where specifically approved by the Company and may require an additional meter.

3.4. It is recommended that any undervoltage tripping devices required by the Customer be arranged to trip individual feeder circuits rather than the main breaker.

3.5. For 480 volt service, it is strongly recommended that Ground Fault Protection be installed on the Customer’s main breaker for services above 1000 amperes.
1. COMPANY FURNISHES AND INSTALLS
 1.1. The company will furnish and install all meters and metering transformers required for billing purposes, and will make all connections to the meter, metering transformers and test switch.

2. COMPANY FURNISHES – CUSTOMER INSTALLS
 2.1. The Company will provide all individual single phase and three phase meter trims as follows; for services up to and including 400 amps and for two gang single phase meter trims used for duplex services up to and including 200 amps.

3. CUSTOMER FURNISHES AND INSTALLS
 3.1. The Customer shall provide, install, and maintain all other types of meter mounting equipment not mentioned in Section B-2. Meter mounting equipment shall be of a type acceptable to the Company. For service rated above 400 amps, single phase and three phase, the Customer will furnish and install an FPU approved cabinet to house meter and current transformers. The Customer shall also furnish and install a 1" diameter conduit from the meter housing to the current transformer housing. The length should be as short as possible and not exceed 100 feet in length. All enclosures containing metered or unmetered conductors or bus shall have provisions to lock or seal. Meter trims for multi-unit (3 or more) facilities will be provided by the Customer after approval by FPU.

4. CONNECTION
 4.1. Metering will normally be connected in the service entrance conductors on the line side of the service equipment. An exception to this is where a main switch is installed in multi-metered installation, metering shall be connected on the load side of the main switch.

5. LOCATION
 5.1. It is to the interest of both the Customer and the Company that a suitable and adequately protected meter location be provided, not only to assure meter accuracy, but also to facilitate reading and testing without undue inconvenience. The Company will designate this location. Unobstructed space of twelve inches on all sides and four feet in front of each meter must be provided.
 5.2. Meter trims will generally be installed at a height of 5’-0” above final grade.
 5.3. It is the Company’s practice to require its meters to be installed outdoors.

6. GROUPED METERS
 6.1. Multiple occupancy buildings (multiple occupancy is 3 or more) shall have a disconnecting means other than the electric meter at the interface of riser conductors and service entrance conductors, and shall comply with the NEC.
7. **RELOCATION**

7.1. Under no circumstances shall a service entrance be left unmetered unless approved by the Company.

8. **SEALS**

8.1. All meters, meter facilities and all points of access to unmetered wiring on the Customer’s premises will be sealed by the Company.
1. FOR USE ON INSTALLATIONS OF #1 TO #2/0 CU OR #4/0 AL SERVICE CONDUCTORS.
2. CENTER LINE METER ELEVATION TO BE 5 FT ABOVE GROUND OR FLOOR LEVEL.
1. CENTER LINE METER ELEVATION TO BE 5 FT ABOVE GROUND OR FLOOR LEVEL.
1. CENTER LINE METER ELEVATION TO BE 5 FT ABOVE GROUND OR FLOOR LEVEL.
1. METER CENTER MUST BE APPROVED BY FPUC
2. DIMENSIONS ARE FOR METER LOCATIONS ONLY

NOTE: FIFTH TERMINAL POSITION FOR 120/208V, 1Ø SERVICE
NOTES:
A. INDIVIDUAL SOCKET FACE, ONE FOR EACH METER OPENING.
B. COMMON TRIP LOAD BREAKER FOR EACH APARTMENT. BREAKERS MUST BE ON LOAD SIDE OF METER SOCKET.
C. FIFTH TERMINAL TO BE PROVIDED WHEN USED ON 120/208V SINGLE PHASE. THE FIFTH TERMINAL SHALL BE LOCATED IN THE 9 O’CLOCK POSITION. AS SHOWN.
D. APARTMENT IDENTIFICATION TAGS MUST BE PLACED ON BOTH METER AND BREAKER FACE PLATES AS WELL AS INSIDE THE METER SOCKET ENCLOSURE.
E. METER CENTER USED MUST BE APPROVED BY FPUC.
F. DIMENSIONS ARE FOR METER LOCATIONS ONLY.

Diagram showing the arrangement of a typical multi-unit apartment house meter center.

72” MAX
30” MIN

GROUND OR FINISHED FLOOR

BEFORE EXCAVATION
CALL TOLL FREE
811
SUNSHINE STATE ONE
CALL OF FLORIDA
SECTION VII – GROUNDING

1. Each service entrance shall have a common connection for equipment and neutral ground.

2. The grounded conductor and equipment of the service entrance shall be effectively and permanently grounded in accordance with or better than the latest edition of the NATIONAL ELECTRICAL CODE as approved by the United States of America Standards Institute, or in accordance with the requirements of applicable authorities having jurisdiction where differences occur.

3. The minimum size ground conductor shall be a #4 solid copper.

4. Each service shall have a driven grounding electrode which exhibits a measured ground resistance of 25 ohms or less.
SECTION VIII – MOTORS

1. MOTOR PROTECTION AND POWER FACTOR

1.1. All motors shall be equipped with effective protection for the motors, the machines they drive, and the wiring. Such devices are installed by the Customer and comply with the NATIONAL ELECTRICAL CODE.

1.2. The use of automatic time delay circuit breakers or time delay fuses is strongly recommended for protecting motors against damage from excessive currents. The time delay feature will eliminate unnecessary operation of the breakers or blowing fuses during motor starting or temporary overloads.

1.3. A low voltage release is designed to disconnect the motor automatically and return the starting device to the “off” position upon partial or total failure of the supply voltage. It is used, where applicable, for motors that cannot safely be subjected to full voltage at starting, or where low voltage would result in injury or damage to equipment. This release should be of the time delay type, capable of adjustment to a maximum of at least two seconds and set at the lowest value suitable for proper protection. The Company will be glad to advise the Customer on the proper interval for coordination with the Company’s circuit breakers. This will prevent unnecessary disconnection of the motor on momentary voltage fluctuations or loss of voltage.

1.4. When installing three phase motors, the Customer should consider the possibility of the loss of one phase, either in his own installation or in the Company’s supply lines. This “single phasing” may happen regardless of the precautions taken to avoid it, and the Company therefore strongly recommends that devices be installed to protect the equipment against the damage that may result.

1.5. Three phase motors for applications to elevators, cranes, hoists, well pumps or other installations where reversal of rotation might cause damage to equipment or constitutes hazard to personnel should be protected by reverse phase relays and automatic circuit breakers to protect the installation in case of phase reversal or the loss of one phase.

1.6. Unbalanced three phase voltages may cause unequal phase currents. Therefore, there should be overcurrent protection in each phase conductor of the motor circuit.

1.7. These protective devices should be supplied and installed by the Customer. The Company will not be responsible for damage to motors due to “single phasing”, reverse rotation, or unbalanced voltages.

1.8. Power factor is a calculation indicating how effective power is being used. It represents the relationship of “real” power (kW) which performs useful work in turning a motor, to “apparent” power (kVA) which magnetizes motor and transformer coils. Motor loads frequently adversely affect the power factor of a circuit, usually from oversized or lightly loaded motors. Certain other types of loads can reduce power factor. A low power factor also reduces the capacity of circuit conductors to deliver “real” power and can increase wiring costs as well as electric
demand on the utility system. The Company reserves the right to adjust meter reading kW for billing where power factor is less than 85%.

1.9. Capacitors are sometimes connected on the load side of a motor controller to improve the power factor of the circuit. When this is done, the total kVAR connected should not exceed the value required to raise the power factor of the motor to unity when it is running unloaded.